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INTRODUCTION taking into account the initial condition (3), yields the fol- 

Since Cattaneo and Vernotte independently postulated the lowing subsidiary equation : 
hyperbolic heat conduction equation in 1958, much effort has 
been made to obtain solutions to this equation for different aT-(s-s,s*)i== 0 (4) 
conditions, and to develop mathematicaland numerical tech- with conditions 
niaues that would accuratelv nredict the non-Fourier tem- 
peiature profiles for a wide Lange of physical geometric and 
boundary conditions. Most of the previous works [l-3] were ; T(O,s) = - ?(l +t&(s) and Y&s) =o 
performed for a pulse heat flux or a sudden temperature 
change, while the work for a periodic flux in a finite medium (5) 
is seldom found in literature. Recently, the authors presented 
an analytical solution of the hyperbolic heat conduction where F(x,s) = L[T(x, t)] and q(s) = L[coswt] are the 
equation in a finite medium under periodic surface heating Laplace transform of T(x, t) and cos en, respectively. 
[4]. This note considers the same situation with the preceding The solution of equation (4) with respect to the condition 
one, but here because a different mathematical treatment is 

(5) is 

used in the derivation, a quite different form of temperature 
solution is obtained. The numerical calculation shows that 
the present solution actually predicts the same temperature 

F(cx, s) = T F, (X, s)F* (s) (6) 

profiles as those in the preceding paper [4]. where 

TEMPERATURE SOLUTION F, (x, s) = (1 + QS) 
e-“+em’,ZL-” 

~$1 -emZrL) 
FZ(S) = 4(s) (7) 

As with ref. [4], we consider a one-dimensional heat con- 
duction in an insulated finite medium with a thickness of L, and 
constant thermal properties, and initial temperature dis- 
tribution T(x, 0) = 0. From time t = 0 the external surface r=JjG&+. 
at x = 0 is exposed to a periodic heat flux with amplitude q,, 
and frequency w. In this situation, the governing equation For convenience in subsequent derivation, the following 

and boundary and initial conditions are functions are introduced : 

a*T aT a*T 
az=dr+Tos 

l-1 (x3 0 = Jc- ’ [F, (x3 $1. 
(1) 

h(f) = L-‘[F,(s)] = coswt. (8) 

-L;T(O,t) =r,;q(O,t)+q(O,f) 

q(0, t) = qo cos ot 

Then by performing inverse transform on equation (6) 
and according to the property of inverse transform, the tem- 
perature response is obtained as 

(2a) 

&T&r)=0 (2b) 
T(x,t) = L-‘[T(x,s)] = +‘[F,(x,s)F,(s)] 

= ~r:s,cx, t) (9) 
T(x, 0) = 0, $ T(x, 0) = 0 q(x, 0) = 0. (3) 

where 
Applying the Laplace transformation to equation (1). by 

f:fz(x> r) = 
s 

fi (x. t’)f2(r-f’) dt’. (10) 
0 

t Author to whom all correspondence should be addressed. The function f,(x, 1) can be derived by introducing the 
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NOMENCLATURE 

ff;I 
thermal diffusivity 1 time 
Fourier number, cr,L’ 10 1 Heaviside unit step function 

J% Fourier number based on frequency 01 I. dimensionless temperature defined by 
heating flux, o/tuL’ equation (I 7) 

M ) modified Bessel function of tirst kind of I C’ Vernotte number, v UT,, L 
zeroth order \ dimensionless spatial variable, .v/L 

L thickness of medium \ spatial variable. 
Y heat flux 
%I amplitude of periodic heating flux Greek symbols 
J Laplace variable L thermal conductivity 
T temperature :,, relaxation time 
T Laplace transformation of 7 C’, frequency of periodic heating Hux. 

following series expansion to F,(.\-,,s) in equation (7) (this 
mathematical treatment is different from that in ref. [4]) : 

then F, (.x. .A) can be written m form of 

The source function of A(.Y..\) can be found tn a table ot 
inverse Laplace transformation, that is 

(13) 

where I(,( ) IS the modified Bessel function of the first kind 
of order zero and u( ) is the Heaviside unit step function. 
Performing inverse Laplace transformation on equation (I I ) 
yields 

f, ,.Y. I) = L ’ [A,s. s)] +r,,L ‘[sA,x.s)] 

= H,s. I) + T,, q” (14) 

After substituting equations (14) and (IO), equation (9) 
takes the form 

x cosm(/-/‘)d/‘. , IS) 
From equation (13) and by a series of manipulations. 

the non-Fourier temperature distribution inside the finite 
medium is obtained as 

For comparison with the solution ofref. [4], the same dtmenstonless quantities are introduced 
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Fe, ,a k’e’=F Xz;, 
WL2 

Then equation (16) is expressed as the following dimensionless form : 
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(17) 

LdjFo’-(2n+X)‘Ve2 u[Fo-(2n+X)Ve] 1 
Fo2-(2n+2-X)*Ve2 u[Fo-(2n+2-X)Ve] 1 i 

&jFo”-(Zn+X)‘Ve’ u[Fo’-(2n+X)Ve] 1 
Fo”-(2n+2-X)‘Ve’ u[Fo’-(2n+2-X)Ve] 1 i 

J J 

Fo-Fo’ Ve2 Fo-Fo’ 
cos __ - - sin ___ dFo’ 

Fo, Fo, Fo, 1 (18) 

which takes a quite different form from that in ref. [4]. Similar 
to ref. [4], we consider a limit situation of the above solution, 
i.e. z0 -+ 0 (or Ve + 0). and then the non-Fourier solution 
should go back to the Fourier solution. Under this condition, 
we have 

$\Fo’-(2n+X)‘Ve’ 

Fo (2n+X)’ =-_ 

2Ve’ 
___ +O(Ve’) (19a) 

4Fo 

1 

can be easily derived by using a Laplace transformation 
technique. 

DISCUSSION 

Numerical computations performed by using equation 
(18) to display the non-Fourier temperature profile in the 
medium show no difference with that from equation (17) of 
ref. [4], i.e. the two solutions predict the same temperature 
behaviors. Obviously it is not necessary for us to plot the 
temperature profiles once more by using the present solution. 

From the analysis in the preceding section and ref. [4], it 
can be seen that when t0 +O, the temperature solution 
obtained in this note reduces to equation (21). which can 
also be expressed as 

Fo (2n+2-Xj2 =~_ 
2Ve’ 4Fo 

+O(Ve’) (19b) 

V(X. Fo) = 

1 = 

Ve 2nLjFo’-(2n+2-X)‘Ve’ 
2Ve’ 

=$z (19c) 

and the Bessel function can be expanded into a series as 
follows : 

1,(.-)=& l+;+&+... - [ 1 cm 
By substituting equation (19) into equation (18) and 

employing equation (20) with Ve + 0, the temperature dis- 
tribution reduces to 

+e-12”+2-X?i4Fb ] cos 
Fo-F’o 
-----dF’o. (21) 

Fo, 

This equation coincides with the Fourier solution which 

Fo-Fo’ 
x cos--- dFo’ 

Fo, 
(22) 

and the other temperature solution reduces to equation (20) 
of ref. [4], which is equivalent to the following equation : 

V(X. Fo) = 1 +2 5 cos(nsX) e-“‘“‘“’ 
“=l 

Fo-Fo’ 
x cos 

Fo, 
0’. (23) 

According to the generalized function theory [5], it is not 
difficult to prove the following relation : 

(24) 

Then we find that equations (22) and (23), i.e. the Fourier 
limits of the two solutions, are actually identical. Surely this 
does not imply that we can state with certainty that the two 
forms of the solutions, the analytical (ref. [4]) and the non- 
analytical @resent note) one, are equivalent, although we 
are not able yet to prove this mathematically. From an engin- 
eering point of view, however, the numerical calculation 
and above discussion show that both of the solutions are 
available for predicting the temperature profiles. 
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